
PONG
Pong is a simple
consists of a
(controlled
and a ball.
bounces
and three
hits the paddle,
points. If the
behind the
game is

game, which
paddle

by the user)
The ball

off the paddle
walls. If the ball

the user gains
ball hits

paddle, the
over.

Last update 5a/13

  Prerequisites
o  Set-up App Inventor on computer and phone
o  Complete HelloPurr, Magic8Ball, and PaintPic tutorials

  Learning Goals
 After completing this tutorial, students will be able to:
o  Operate within the App Inventor environment (designer, block editor,

emulator and/or mobile phone)
o  Associate App Inventor components (canvas, buttons, labels,

animation sprites, procedures with no parameters, global variables,
and conditionals) with their corresponding functions

o  Create an interactive game with user input (touch) and computer
generated outputs (ball heading, score, text prompt)

  Materials
o  Images & Sounds

http://appinventor.mit.edu/teach/curriculum/media-library.html
o  MIT Quick Reference Guide, MIT App Inventor Development Guide

http://appinventor.mit.edu/teach/curriculum/getting-started-
guide.html

o  Video (snippets to assist students through this lesson)
 http://www.valdosta.edu/~kroy/ai-tutorials.html

  Set-up
o  Open App Inventor Designer window

 http://beta.appinventor.mit.edu
o  Sign in with Google ID
o  Download and save image of paddle and ding sound file at

http://appinventor.mit.edu/teach/curriculum/media-library.html (look
for Pong media files)!

Getting Started

1

Brainstorm, Plan, and Sketch
What will your game look like? What will each component do?
What are the constraints or rules of the game? In the space
provided below and on the left, draw and write out your ideas
for PONG. Think about it from a programmer’s perspective.

2

How to use this tutorial > Design
(if you are familiar with App Inventor and want to start making

PONG, skip to page 9) To use this tutorial to design
an app, start with step 1 (first
column) of the tutorial. The
“Palette Group” column in
the Table corresponds to the
Palette Group in the App
Inventor Design Window.

Within the palette group,
you’ll see a palette called
“Basic,” within which you will
find the component called
“Label.”

The “Action” column tells
you what to do with the
component. The two
columns on the right (“What
You’ll Rename It” and
“Properties”) correspond to
the “Components” and
“Properties” area of the
Design Window. These two
columns tell you what to
rename the components
and what parameters to
input for each component
type. Design!Tutorial!Table!

Design!Screenshot!

3

How to use this tutorial > Build

Build!Tutorial!Table!

Build!Screenshot!

You can use this tutorial to build
an app in the same way that you
use it to design an app. The
“Palette Group” column in the
table corresponds to the three
Palette Group tabs in the App
Inventor Build Window.

The screenshot to the left
demonstrates how to perform
steps 4-6 of the tutorial. Step 4
directs you to the “My Blocks”
palette group to find a drawer
called “Ball1”. Within “Ball1”,
locate the “when
Ball1.EdgeReached” block (all
blocks are annotated using
brackets []). Drag the block into
the work area. Then locate the
“call Ball1.Bounce” block and
drag into “Ball1.EdgeReached”.

Continue to follow along with the
instructions in the “Action”
column. If you are ever
confused about the steps, look
at the “Purpose” column for an
explanation of the step. 4

Before we start building, let’s
add a few tools to your toolkit

5

REQUIRED TOOLS!

  Hover over blocks!
  Click to select!
  Declutter work area!
  Blocks shortcut!
  Copy and paste blocks!
  Typeblocking!

Some techniques and shortcuts that
make life easier in App Inventor
HOVER!OVER!BLOCKS!

DECLUTTER!WORK!AREA!

CLICK!TO!SELECT!

Although the instructions in this tutorial tell you to “drag”
blocks into the work area or into other blocks, you can
also select a block without dragging it by simply clicking
on it once. This will make the block appear in your work
area, at which point you can drag it anywhere you
want.

If you ever want to know more about
what a particular block does,
especially if you are using that block for
the first time, you can hover your
pointer over the block and a text box
with explanation will appear.

As you work on increasingly complex projects, you may
find that you don’t have much room in the work area.
You can solve this dilemma by minimizing a block that
you aren’t using. There is a black triangle on the upper
left hand corner of the block. If you click on this triangle,
the block will minimize and the triangle will turn upside
down. If you click on it again, the block will maximize to
its original appearance.

In! programming,! syntax! and! accuracy!

maFers.! The! computer! recognizes! a! lower!

case! leFer! and! an! upper! case! leFer! as!

different! enKKes! (ex:! imagesprite1! vs.!

imageSprite1).! Be! consistent! in! inpuQng!

variables.! This! includes! spaces,! colons,!

underscores,! upper! case,! and! lower! case.!

Minor!differences!may!seem!insignificant!to!

us,! but! they! mean! different! things! to! App!

Inventor.!
6

BLOCKS!SHORTCUT!
TYPEBLOCKING!

COPY!AND!PASTE!BLOCKS!

And a few more for good measure…

Typeblocking is another time and effort-
saving feature built into App Inventor. By
simply typing a number or text, you can
create a corresponding number or text
block. In the example above, we want to
insert a number block into the second socket
of the division block. By simply clicking at the
empty socket and typing “2,” you can
create a “number 2” block. You will,
however, have to drag the block into the
socket to complete the action.

Blocks shortcut is a time and effort-saving feature that
allows you to create blocks without having to access
the palette and drawer on the left side of the build
browser. By clicking once anywhere within the work
area, you bring up a drawer menu from which to
choose blocks. In the example above, we can call on
the “true” block by simply clicking once in the work
area, choosing “Logic” from the menu blocks and
choosing “true” from the dropdown menu.

Did you know that App Inventor has a copy and
paste function? By clicking on the block or group of
blocks and pressing CTRL+C (or CMD+C for Mac
users), you can copy blocks. Pressing CTRL+V (or
CMD+V for Mac users) pastes the block in the work
area. 7

If you were building a house,
the DESIGN process is like your

blueprint

8

NEXT STEPS!

  Open App Inventor
Design Window!

  Create a new project
called “Pong”!

  Start with step 1 of
the tutorial!

 9

Step Palette Group Component Type Action What You'll Rename It
(in Components
pane)

Properties Purpose

1 Basic Label Drag to Viewer ScoreLabel Font size: 18
Text: Score
Width: 150 pixels
Height: 30 pixels

2 Basic Button Drag to Viewer StartButton Text: Start

3 Basic Button Drag to Viewer ResetButton Text: Reset

4 Screen Arrangement Horizontal Arrangement Drag to Viewer HorizontalArrangement1
(Default)

5 *Viewer ScoreLabel (1) Drag into Horizontal Arrangement
StartButton (2) Drag into Horizontal Arrangement

 (to the right of ScoreLabel)
ResetButton (3) Drag into Horizontal Arrangement

 (to the right of ResetButton)

6 Basic Canvas Drag to Viewer Canvas1 Background Color: Your choice
(Default) Width: 300 pixels

Height: 390 pixels

7 Animation Ball Drag into Canvas component Ball1 Heading: 30
(Default) Interval: 50

Paint Color: Your choice
Radius: 20
Speed: 5

8 Animation ImageSprite Drag into Canvas component ImageSprite1 Interval: 1000
(Default) Picture: Paddle.gif

Y: 350 (you can adjust this
number to move the paddle up
or down on the screen)

SUBGOAL #1: Create a score label, start button, and reset button.

SUBGOAL #2: Arrange the score label, start button, and reset button along the top of the screen, adjacent to one another.

SUBGOAL #3: Incorporate a background, ball, and paddle into the game.
The canvas serves as the
background, or pong
table.

This is the ball the player
will hit to gain points.

This is the paddle the
player will use to hit the
ball.

Label will populate with the
score during the game.

Button starts the game.

Button resets the game
and the score.

This function arranges
buttons horizontally across
the screen.

Includes button in
horizontal arrangement.

Here’s a screen shot of the Design
window once all 8 steps are complete

Give yourself a pat on the back. You are done designing. Be sure to save your work periodically
throughout the design (and build) process.

10

Now let’s BUILD

11

NEXT STEPS!

  Click on “Open the
Blocks Editor” button
on the upper right
hand corner of the
design browser!

  Download and open
Java File to run
Blocks Editor!

  Connect your phone
or open the emulator
so you can see your
work as you build!

 12

Step Palette Drawer Block Action Purpose

1 My Blocks Canvas1 [when Canvas1.Touched] Drag into work area
This block will contain the set of commands that
App Inventor executes when the user touches the
canvas.

2 My Blocks ImageSprite1 [set ImageSprite1.x] Drag into "do" socket of [when Canvas1.Touched]

3 My Blocks My Definitions [value x] Drag into edge of [set ImageSprite1.x]

4 My Blocks Ball1 [when Ball1.EdgeReached] Drag into work area
This block will contain the set of commands that
App Inventor will execute when the ball reaches the
edge of the canvas.

5 My Blocks Ball1 [call Ball1.Bounce] Drag into [Ball1.EdgeReached]

6 My Blocks My Definitions [value edge] Insert into socket of [Ball1.Bounce]

7 My Blocks StartButton [when StartButton.Click] Drag to the work area
This block will contain the set of commands that
App Inventor will execute when the user clicks (or
touches) the start button.

8 My Blocks Ball1 [set Ball1.Heading] Insert into "do" section of [when StartButton.Click]

9 Built-In Math [call random integer]

Drop into socket of [set Ball1.Heading], replace
default number "1" in [number 1[with "225" and
default number "100" in [number 100| with "315" by
clicking exisitng number and typing new number.

10 My Blocks Ball1 [set Ball1.Speed] Place under [set Ball1.Heading]
Tells App Inventor to set ball speed once user clicks
the start button.

11 Built-In Math [number 123]
Plug into [set Ball1.Speed] socket and replace
default number "123" with "5"

Moves the ball 5 pixels in the direction of its heading
each time its internal clock ticks. The internal clock
of an object is called its interval.

Makes ball take on a random heading between 225
and 315 degrees when the start button is clicked.

SUBGOAL #4: Program the position of the paddle when the user touches the screen.

SUBGOAL #5: Make the ball bounce whenever it reaches the edge of the screen.

SUBGOAL #6: Set the ball in motion at a random heading and fixed speed whenever the user touches the Start Button.

Sets the image sprite (paddle) to the x value (along
x,y plane) of the user's touch input.

Bounces the ball whenever it reaches the edge of
the canvas.

 13

Step Palette Drawer Block Action Purpose

12 My Blocks Ball1 [call Ball1.MoveTo] Place under [set Ball1.Speed]

13 Built-In Math [/] (division block) Put in "x" socket of [call Ball1.MoveTo]

14 My Blocks Screen1 [screen1.Width]
Drag and drop into first blank area of [/] and TYPEBLOCK "2" in
the second blank area of [/]. If you are not familiar with
TYPEBLOCKING, refer to page 7 of this tutorial.

15 My Blocks Ball1 [Ball1.Radius] Drag and drop into "y" area of [Ball1.MoveTo]
Starts the ball in the middle of the screen near the top each
time a player clicks the start button.

16 My Blocks Ball1 [set Ball1.Enabled]
Drag into [when StartButton.Click] above [set Ball1.Heading],
use BLOCKS SHORTCUT to choose "Logic," then click on "true"
and drag into socket.

Starts the ball moving when user clicks on start button.

17 My Blocks Ball1 [set Ball1.Interval]
Drag into [when StartButton.Click] below [set Ball1.Enabled]
and TYPEBLOCK "10" into "to" socket of [set Ball1.Interval]

Causes the ball to move every 10 milliseconds when user clicks
on start button. It will move the number of pixels specified in
the "speed property."

18 My Blocks ImageSprite1 [when ImageSprite1.Dragged] Drag and drop into the work area
This block will contain the set of commands that App Inventor
will execute when the user drags the image sprite (paddle).

19 My Blocks ImageSprite1 [call ImageSprite1.MoveTo]
Drag and drop into "do" section of [when
ImageSprite1.Dragged]

Tells App Inventor to move the image sprite (paddle).

20 My Blocks My Definitions [value currentx] Drag and drop into "x" slot

21 My Blocks ImageSprite1 [ImageSprite1.Y] Drag and drop into "y" slot

22 My Blocks Ball1 [when Ball1.CollidedWith]
Drag and drop in work area. Click on word "other" in [name
other] and type "ImageSprite1"

This block will contain the set of commands that App Inventor
will execute when the ball collides with specified object.

26 My Blocks Ball1 [set Ball1.Heading]
Drag out and drop into "do" section of [when
Ball1.CollidedWith]

Tells App Inventor to set ball heading.

27 Built-In Math [-] (subtraction block)
Drag and drop into "to" socket of [set Ball1.Heading] and
TYPEBLOCK "360" into first socket of [-]

28 My Blocks Ball1 [Ball1.Heading] Drag and drop in second blank area of [-]

SUBGOAL #7: Make the paddle move when the user touches or simulates a dragging motion on the screen.

SUBGOAL #8: Make the ball bounce whenever it touches the paddle.

Moves the paddle in x (horizontally) when you drag it on the
touch screen, but not move it in y (vertically).

Sets ball heading based on the difference between 360 and
and the current ball heading. Reverses the ball when it hits the
paddle.

This series of steps moves the ball to a specified (x,y) position
on the canvas. In this case, you are telling App Inventor to
move the ball to an x position, which is half of the screen width
(x=150) and a y position with is half of the radius (y=10).
Essentially, the ball will be positioned at the top and centered
between the left and right side of the screen.

We’re about halfway done.
Let’s take a break and see if

we’re on track.

14

While you are taking a well-
deserved break…

Take a step back and
examine your work.
Computer programmers
often build their program in
manageable chunks and
test regularly to identify and
fix bugs. If you tested the
app right now, what would
happen?

What would your app do
and what would it NOT do?
Look at how many events
you’ve created and what
they actually mean.

Can you think of any other
events that we have not yet
covered for PONG to be a
fully-functional game?
Once you’ve identified
these events, you’re ready
to move on.

Answer.!!At!this!point,!your!app!can!perform!the!following!tasks:!1)!Paddle!will!posiKon!to!point!of!user!touch!(x,!but!not!yZ

coordinate)!and!will!move!when!dragged,!2)!Ball!will!bounce!off!all!four!edges!of!the!screen,!3)!Ball!will!posiKon!to!the!top!center!of!

screen!when!start!buFon!clicked!and!move!at!set!speed!and!random!heading!within!defined!range,!4)!Ball!will!bounce!off!paddle.!

15

One more thing you should know…

Before you start on part 2 of PONG, there’s something
you should know that will help you understand the
mechanics of ball movement on the screen.

App Inventor assigns numeric values to the edges of the
canvas as follows:

Top = 1
Right = 3
Bottom = -1
Left = -3

This is important if you want to differentiate what the
game does when the ball touches the left and right
edges, as opposed to the bottom edge.

Also, heading values for animated objects go in full
circle like a compass, with values between 0 and 360
degrees. An object moving toward the top of the
screen is said to have a heading of 90 degrees.

In part 1 of the tutorial, what ball heading range did
you specify when the user clicks the start button? How
does that translate into where the ball will actually
move? Can you see how the ball will bounce back in
reverse when it collides with the paddle?

16

 17

Step Palette Drawer Block Action Purpose

29 Built-In Control [Ifelse] Drag out

30 Built-In Math [=] (equal block) Drag out and drop into "test" socket of [Ifelse]

31 My Blocks My Definitions [value edge]
Drag and drop into first empty area of [=], click on second
empty area and TYPEBLOCK "-1" into second empty area.

32 My Blocks Ball1 [set Ball1.Enabled]
Drag and drop in the "then-do" area of [Ifelse]. Click to the
right of the block to get the popup menu, then click "Logic" and
choose "false." Drag [false] into socket

Stops the ball from moving when it gets past the paddle.

33 My Blocks ScoreLabel [set scoreLabel.Text]
Attach it underneath [set Ball1.Enabled]" then-do" socket (not
in [else do])

34 Built-In Text [text text]
Drag out and drop after "to" of [set ScoreLabel.Text] (you can
also click the work area to get the blocks shortcut menu and
choose text). Click the text and change to "Game Over!"

35 *Work area [when Ball1.EdgeReached]

Find [when Ball1.EdgeReached] from earlier (step 4), drag [
call Ball1.Bounce] out from [when Ball1.EdgeReached], and
drop into "else-do" socket of [Ifelse]. Drag [Ifelse] into [when
Ball1.EdgeReached edge]

This entire [Ifelse] will cause the ball to bounce off of all edges
except the bottom (southern) one.

36 Built-In Definition [def variable]
Drag and drop into open area. Click on "variable" and type
"score."

Changes the name of the variable to "score".

37 Built-In Math [number 123] Put into "as" socket of [def score] and replace "123" with "0" Creates a variable named "score" and sets its value to 0.

38 Built-In Definition [to procedure]
Drag out and drop in open area, click on "procedure" and
rename it "updateScore"

Creates a procedure called "updateScore"

39 Built-In Definition [name name]
Drag out and drop in open area, click on "name" and type
"scorevalue." Move this piece in into [to update Score] "arg"
socket

Creates a parameter for the procedure that is named
"scorevalue." A parameter is a temporary variable that holds a
value for a procedure. The value is specified when the
procedure is called.

SUBGOAL #9: Stop the ball and end the game when the ball reaches the southern edge of the screen.

SUBGOAL #10: Increase the score count by 1 everytime the ball bounces off the paddle.

Makes the text "Game Over!" appear on the screen in the
ScoreLabel when the ball gets past the paddle.

This set of blocks tells App Inventor what to do when the ball
reaches an edge. In this case, we want App Inventor to test if
the edge reached is the southern (or bottom) edge. If the ball
has reached the bottom edge of the canvas, then App
Inventor should execute a certain action (end the game), but if
the ball reaches any other edge, then it should bounce.

 18

Step Palette Drawer Block Action Purpose

40 My Blocks My Definitions [set global score] Drag and drop in "do" area of [to updateScore]

41 My Blocks My Definitions [value scorevalue] Drag and drop in "to" area of [set globalscore]

42 My Blocks ScoreLabel [set scoreLabel.Text] Drag and drop under [set globalscore]

43 Built-In Text [join]
Drag and drop into "to" socket of [set ScoreLabel.Text]
and use blocks shortcut menu to make the first blank
area [text], which reads "Score: "

44 My Blocks My Definitions [global score] Drag and drop into the second empty area of [join]
Sets the text of the score label to a string that joins
together "Score:" and the actual value of the score
variable.

45 My Blocks My Definitions [call updateScore]
Drag and drop at the bottom of [startButton.Click]
below [call Ball1.MoveTo]. TYPEBLOCK "0" into
"scorevalue" socket.

Updates the score to 0.

46 My Blocks My Definitions [call updateScore]
Drag and drop in [Ball1.CollidedWith] below [set
Ball1Heading]

47 Built-In Math [+] (addition block)
Drag and drop into [call UpdateScore] "scorevalue"
socket of [when Ball1.CollidedWith]

48 My Blocks My Definitions [global score]
Drag and drop into first empty area, click on second
empty area and TYPEBLOCK "1" and drag into socket.

49 My Blocks ResetButton [when ResetButton.Click] Drag to open area
This block will contain the set of commands that App
Inventor will execute when the user clicks on the reset
button.

50 *Work area
Go to set of blocks inside [startButton.Click] that you
created previously and highlight [Ball1.Move to] by
clicking the block and hitting CTRL+C (or CMD+V)

Copies the the entire procedure within [Ball1.Move].

51 *Work area
Click anywhere in open area and hit CTRL+V (or
CMD+V), then drag the whole procedure block in [
ResetButton.Click]

Pastes the blocks you copied and moves the ball to start
position when user clicks on "Reset" button.

52 My Blocks ScoreLabel [set ScoreLabel.Text]
Drag and place under [call Ball1.MoveTo] within [when
ResetButtonClick]

53 Built-In Text [join]

Drag and drop into "to" socket of [set ScoreLabel.Text],
set the first empty area to text "Score: " by using blocks
schortcut menu (click "text" twice and type "Score: ") and
TYPEBLOCKING "0" into second empty area.

Updates the score by +1 everytime the ball hits the
paddle.

Moves the ball back to the start position (at the top of
the screen, centered between left and right side) and
resets the score to "0".

This set of blocks sets the score label and updates the
score variable. The global score is the current (or old
score), whereas the scorevalue is the new score when
the player successfully bounces the ball off the paddle.

SUBGOAL #11: Program the sequence of action when the user touches the Reset button. Reposition the ball to its start position and reset the score to 0.

The Big Picture
Great job getting to the
end of this tutorial! If you’ve
followed all the steps in the
design and build processes,
these are the blocks you
should see in your build
window.

Now is a good time to
examine the blocks and
think about how each step
relates to what’s happening
on your phone (or
emulator).

Do you understand what
each block does in your
app? Once you’ve had a
chance to step back, look
at the big picture, and test
your app a few times,
you’re ready to move on to
packaging the app and
tackling some additional
challenges!

19

Congratulations! You’ve built
PONG!

Package!App!

NoKce!that!your!app!disappears!when!

you!unplug!your!phone!from!the!USB!

cable!or!disconnect!from!wifi.!!This!is!
because!the!app!is!sKll!stored!in!the!

App!Inventor!server!and!not!in!your!

phone.!!To!learn!how!to!package!your!

app!to!your!phone,!go!to:!

hFp://appinventor.mit.edu/teach/
curriculum/packagingZapps.html!

Return!to!Module!1!

hFp://appinventor.mit.edu/

teach/curriculum/

moduleZ1.html!

Challenge!1!

Increase!the!speed!of!the!ball!and!

decrease!the!size!of!the!ball!when!the!

score!increases!an!increment!of!10.!!
(Hint:!Under!the!Math!drawer,!the!|

remainder|!(a,b)!returns!the!result!of!

dividing!a!by!b!and!taking!the!

remainder.!

Challenge!2!

Download!audio!file!from!the!App!

Inventor!Media!Library!page!and!

upload!them!to!the!Designer.!!Make!
the!“noink”!sound!play!when!the!ball!

hits!the!edge!of!the!wall,!the!“taZda”!

sound!when!the!speed!of!the!ball!

increases,!and!the!buzzer!sound!when!

the!ball!hits!behind!the!paddle.!

Even!More!Challenges!

 !Give!the!player!3!lives!so!they!get!3!
tries!before!“Game!Over!”!

 !With!mulKple!lives,!decrease!the!
score!by!1!each!Kme!the!player!loses!a!

life!

 !InvesKgate!what!happens!if!you!
change!the!range!of!random!numbers!

for!the!start!heading!when!the!start!
buFon!is!clicked!

 !Make!the!app!respond!to!KlKng!of!

the!phone!instead!of!dragging!the!

paddle.!
Feel free to send comments or feedback about

this tutorial to: pearl.phaovisaid@gmail.com!!
20

